Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The mantle section of the Late Neoproterozoic Tays ophiolite in the Arabian Shield consists principally of thoroughly serpentinized peridotite with characteristics typical of depleted mantle protoliths from a fore-arc environment. The serpentinite is altered along shear zones and thrust planes to gold-bearing listvenite bodies of various sizes. These bodies are divided into carbonate listvenite and silica‐carbonate listvenite; they may be dyke-like or lenticular in form, and are yellowish-brown, reddish-brown, or greyish in outcrop. Carbonate list- venite expresses schistose deformation fabrics concordant to fabric in the host serpentinite, whereas silica‐car- bonate listvenite is undeformed at field scale and contains a generation of undeformed minerals at thin-section scale. Silica‐carbonate listvenite contains Cr-rich muscovite (fuchsite) and base-metal sulfides and is enriched in Zn, Pb, Cu, Ag, and Au along with SiO2. The transformation of serpentinite along shear zones to different types of listvenite reflects successive episodes of fluid-mediated metasomatism. Carbonate listvenite develops first, driven by infiltration of CO2–bearing fluids during serpentinization of the original fore-arc peridotite. Silica‐carbonate listvenite marks a later episode associated with infiltration of K-bearing, SiO2-saturated fluids released during emplacement of the ophiolite. Listvenitization in the Tays serpentinite concentrated gold in sub-economic to economic extents, with concentrations increasing from host serpentinite (2–4 ng/g) to carbonate listvenite (267–937 ng/g) to silica‐carbonate listvenite (1717–3324 ng/g).more » « less
-
The Wadi Al-Baroud area, in Egypt’s Eastern Desert, exposes Neoproterozoic rocks of the Arabian-Nubian Shield (ANS), including both syntectonic granitoids (granodiorite and tonalite) and post-collisional granites. We present field work, petrographic study, mineral compositions, and whole-rock geochemistry results from these granitoids and discuss their petrogenesis, magmatic sources, evolution, and tectonic significance. The syntectonic granitoids show subduction affinity and an anomalous steep trend of K-enrichment that suggests assimilation of a granitic component during their evolution. The post-collisional granites form two plutons, on opposite sides of Wadi Al- Baroud, named here the Ras Baroud pluton (RBP) and the Abu Hawis pluton (AHP). They intruded the syn- tectonic granitoids with sharp intrusive contacts. The post-collisional plutons are devoid of mafic enclaves and are cut by very few dikes. They dominantly consist of biotite monzogranite that grades into muscovite mon- zogranite. The latter lithology hosts Nb-Ta oxide minerals (columbite, tantalite, and wodginite) displaying a variety of textural and compositional features. The cores are primary columbite-(Mn), whereas rims are over- grown or partly replaced by tantalite-(Fe) and wodginite due to late interactions with highly fractionated re- sidual melt. The highly-evolved AHP and RBP granites are typical of the post-collisional granitoids of the ANS, including high concentrations of rare earth elements (REE), Ta, Hf, Nb, Zr, Y, and Rb; elevated ratios of Ga/Al; and low contents of Sr, CaO, and MgO. Their geochemistry suggests that the parental magma of both plutons formed from an I-type tonalitic source rock that underwent partial melting during the thermal disturbance that followed a lithospheric delamination event during the post-collisional stage of the East African Orogeny. The variations in major oxide and trace element contents among individual samples of the AHP and the RBP cannot be explained as a liquid line of descent due to fractional crystallization; rather we interpret them as sampling variable proportions of an evolved liquid and the solid crystals in equilibrium with that liquid.more » « less
-
Loveringite, a rare member of the crichtonite group with nominal formula (Ca,Ce)(Ti,Fe,Cr,Mg)21O38, was found in the Khamal layered mafic intrusion, the first known locality for this mineral in the Arabian Shield. The Khamal intrusion, a large post-collisional mafic complex, is lithologically zoned, bottom to top, from olivine gabbro through gabbronorite, hornblende gabbro, anorthosite, and diorite to quartz diorite. Loveringite is found near the base of the complex, as an intercumulus phase in olivine gabbro. Most loveringite grains are homogeneous, although a few grains are zoned from cores rich in TiO2, Al2O3, Cr2O3, and CaO towards rims rich in FeO*, ZrO2, V2O3, Y2O3, and rare earth elements (REE). Petrographic relations indicate that loveringite formed after crystallization of cumulus olivine, pyroxenes, and plagioclase. Anhedral and corroded crystals of loveringite are surrounded by reaction rims of Mn-bearing ilmenite and baddeleyite, suggesting that the residual liquid evolved into and subsequently out of the stability field of loveringite. The budget of incompatible elements (Zr, Hf, REE, U, and Th) hosted in loveringite is anomalous for a primitive mafic liquid. Saturation in loveringite is likely the result of early contamination of the primary melt by anatexis of country rock, followed by isolation of evolving liquid in intercumulus space that restricted communication with the overlying magma chamber. The zoned crystals likely reflect diffusive equilibration between residual loveringite grains and their reaction rims of ilmenite.more » « less
An official website of the United States government
